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Abstract 

 In this paper, we will show how to represent polynomial equations with complex 

coefficients using Lill’s method. We will also discuss various general properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 Lill’s method is a remarkable visual method that can be used to represent and solve 

graphically polynomial equations. Lill’s method was developed in 19th century by the Austrian 

engineer Eduard Lill. All the papers that discussed Lill’s method since the time of Lill himself, 

only dealt with polynomial equations with real coefficients. Eduard Lill showed in his second 

paper [1] how to represent the roots that have imaginary parts, but nobody discussed how to 

represent the polynomials that have coefficients with imaginary parts. By showing how to 

represent polynomials with complex coefficients, we make Lill’s method more complete. At the 

end, we will also discuss some general properties and possible applications. 

Graphing Polynomials 

 Let’s have the general polynomial of order n, P(z)=anz
n+an-1z

n-1+…+a1z+a0, where the 

coefficients {an, an-1, … , a1, a0} are complex numbers. In Lill’s method the polynomial P(z) can 

be represented by a link of connected straight segments P0 P1 P2… Pn Pn+1, where PkPk+1 is a 

straight segment corresponding to an-k, where 0≤ 𝑘 ≤ 𝑛. But to construct the link we must know 

what length and direction to apply to the segments that make up the link. The segment Pn-k Pn-k+1 

that corresponds to the coefficient ak is obtained with the following formula: Re(ak)e
i(n-k)π/2 + 

Im(ak)e
i(n-k+1)π/2, where 0≤ 𝑘 ≤ 𝑛 and i is the imaginary number.  

 To make the things more concrete, we can represent the 2nd degree polynomial 

P(z)=x2+x+(1-i). Thus we have a2=1, a1=1 and a0=1-i. The segment P0 P1 corresponding to a2=1 

is given by Re(1)ei(2-2)π/2 + Im(1)ei(2-2+1)π/2=e0+0=1. Thus, if we let P0 to be the point of origins of 

our link, then P1 is one unit to the right of P0. Now P1 is the starting point for the segment P1 P2 

that corresponds to a1=1. Similarly the segment P1 P2 is given by Re(1)ei(2-1)π/2 + Im(1)ei(2-1+1)π/2= 

eiπ/2+0=i.Thus P2 is one unit up with respect to P1. Finally, we obtain the segment P2 P3 that 

corresponds to the coefficient a0=1-i and is given by Re(1-i)ei(2-0)π/2 + Im(1-i)ei(2-

0+1)π/2=eiπ−e3iπ/2=−1 −(−i)=−1 + i. Thus, P3 is one unit to the left and one unit up with respect to 

P2. Lill’s representation of the polynomial P(z) is shown in Figure 1.  

 Before we go forward discussing how to obtain the roots of polynomials, we can make a 

few observations. If the successive coefficients ak and ak-1 are real numbers, then the segments 

corresponding to them will be perpendicular. In Figure 1 we can see that P1P2 is perpendicular to 

P0P1.  In papers [2] and [3] some extension of the Lill’s method for representing polynomials 

with real coefficients was discussed, where the segments corresponding to ak and ak-1 don’t have 

to be perpendicular. However even this extended Lill method graphs a polynomial using a fixed 

angle φ, so the angle between the segments corresponding to ak and ak-1 is 180-φ or φ. By using 

the method presented in this paper, we can see that the angle between the segments 

corresponding to ak and ak-1 can be any angle between 0 and 180 degrees and it doesn’t depend 

on any fixed angle. In Figure 1, we can see that P1P2 is perpendicular to P0P1, but P2P3 is at 135 

degrees with respect to P1P2. Also, the extended Lill’s method discussed in papers [2] and [3] can 



only represent polynomials with real coefficients.  Nonetheless the 2 papers were an inspiration 

for this paper. 

 

Figure 1 

 

Solutions 

 A solution path to a general polynomial of order n, P(z)=anz
n+an-1z

n-1+…+a1z+a0, where 

the coefficients {an, an-1, … , a1, a0} are complex numbers, is given by a path P0A1A2…An-1Pn+1 

such that the triangles P0P1A1, A1P2A2, A2P3A3, …, An-2Pn-1An-1 and An-1PnPn+1 are similar, and 

m(P1P0A1)=m(P2A1A2)=…=m(Pn-1An-2An-1)=m(PnAn-1Pn+1)=θ. The angle θ is the solution angle 

and it has a positive value when P0A1 is counterclockwise with respect to P0P1.Some special 



cases occur when the polynomial P(z) has roots with Re(z)=0. The most special case is z= -i, 

since θ is undefined for this value of z. Otherwise, if Re(z)=0 and z is not -i, θ can be 0 degrees 

or 180 degres. 

 In the general case where z is not necessarily a root of the polynomial P(z), the path 

obtained using Lill’s method is given by P0A1A2…An-1An, such that the triangles P0P1A1, 

A1P2A2, A2P3A3, …, An-2Pn-1An-1, An-1PnAn are similar and m(P1P0A1)=m(P2A1A2)=…=m(PnAn-

1An)=θ. Thus, z is a root only when An is the same point as Pn+1. We can use some formulas from 

paper [4], to obtain the points A1,A2,… and An. Thus, taking the segment PkPk+1 corresponding to 

an-k as our reference, we get: 

AkPk represents anz
k+…+an-k+1z                                                             (1) 

and 

AkPk+1 represents anz
k+…+an-k+1z+an-k                                                                             (2) 

 So we obtain this useful equations: 

A1P1 represents anz, with respect to P1P2                                                                          (3) 

and 

AnPn+1 represents anz
n+an-1z

n-1+…+a1z+a0=P(z), with respect to PnPn+1   (4)  

Thus, when the points An and Pn+1 are the same, we get P(z)=0 and z is a root.  

 To make things more concrete, we can graph the solution path of our polynomial 

P(z)=x2+x+(1-i). P(z) can be factored as (z-i)(z+(1+i)), so z1=i and z2=−1−i. Figure 2 shows the 

path for both roots. Thus, the path for z1=i is given by P0A1P3 and the path for z2==−1−i is given 

by P0B1P3. We can also see that m(P1P0A1)=m(P2A1P3)=0, thus θ1=0. We already mentioned that 

the case when θ=0 is a special case since the triangle P0P1A1 is actually a straight line because 

m(P1P0A1)=0.  On the other hand m(P1P0B1)=m(P2B1P3)=90. We can also see easily that the 

triangles P0P1B1 and B1P2P3 are similar triangles. We can also check using the equations (1)-(4). 

For example, A1P1 =−1,so A1P1 goes 1 unit to left. If a1 had a +i component, then the direction 

of the imaginary part would be Im(i)ei(2-1+1)π/2=(1)eiπ=(1)(-1)=(-1). Thus, if a1 had a +i 

component, it would have the same direction as A1P1. We can say that A1P1 represents i with 

respect to the side P1P2.  B1P1= 1 – i, and represents −1 −i with respect to P1P2. The real part of 

B1P1 is opposite to A1P1=−1, so it should represent −i with respect to P1P2. The imaginary part 

or the vertical part of B1P1 goes in the opposite direction of P1P2=i. Since P1P2 represents the 

coefficient a1=1, the vertical component of B1P1 should represent −1 with respect to P1P2. 

 

 



 

 

 

 

 

 

 

 

 



References 

1) M. E. Lill (1868). "Résolution graphique des équations algébriques qui ont des racines 

imaginaires". Nouvelles Annales de Mathématiques. 2. 7: 363–367. 

2) MEULENBELD, B., “Note  on  LILL'S  method  of solution  of numerical  equations”.  Proc. 

Kon. Ned Akad. V. Wetensch. 53, 464 (1950). 

3) Dan Kalman, and Mark Verdi. “Polynomials with Closed Lill Paths.” Mathematics Magazine, 

vol. 88, no. 1, 2015, pp. 3–10. JSTOR, www.jstor.org/stable/10.4169/math.mag.88.1.3. 

4) Meulenbeld, B “NOTE ON THE REPRESENTATION OF THE VALUES OF 

POLYNOMIALS WITH REAL COEFICIENTS FOR COMPLEX VALUES OF THE 

VARIABLE” 

http://www.jstor.org/stable/10.4169/math.mag.88.1.3

